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The Notch pathway is an essential regulator of cell proliferation and differ-

entiation during development. Its involvement in insect oogenesis has been

examined in insect species with meroistic ovaries, and it is known to play a

fundamental role in cell fate decisions and the induction of the mitosis-to-

endocycle switch in follicular cells (FCs). This work reports the functions

of the main components of the Notch pathway (Notch and its ligands

Delta and Serrate) during oogenesis in Blattella germanica, a phylogenetically

basal species with panoistic ovary. As is revealed by RNAi-based analyses,

Notch and Delta were found to contribute towards maintaining the FCs in

an immature, non-apoptotic state. This ancestral function of Notch appears

in opposition to the induction of transition from mitosis to endocycle that

Notch exerts in Drosophila melanogaster, a change in the Notch function

that might be in agreement with the evolution of the insect ovary types.

Notch was also shown to play an active role in inducing ovarian follicle

elongation via the regulation of the cytoskeleton. In addition, Delta and

Notch interactions were seen to determine the differentiation of the posterior

population of FCs. Serrate levels were found to be Notch-dependent and are

involved in the control of the FC programme, although they would appear

to play no crucial role in panoistic ovary oogenesis.
1. Introduction
Cell–cell communication is a basic activity of multicellular organisms, and

regulates one of the most important events of development: cell differentiation.

Certainly, Notch (N) signalling would appear to be one of the most important

pathways involved in determining cell fate [1–3].

The core integral proteins of the Notch pathway in insects are the Delta (Dl)

and Serrate (Ser) ligands of N (known as Delta-like and Jagged, respectively, in

mammals), the N receptor (Notch 1–4 in mammals) and the transcription factor

suppressor of hairless (Su-H) (CSL in mammals). Dl and Ser localize to the

membranes of signal-sending cells, whereas N is located in the membranes of

signal-receiving cells. Su-H joins to the N intercellular domain (NICD) in the

nucleus, triggering the transcription of multiple target genes [4,5].

Notch has a pleiotropic function during the development of Drosophila
melanogaster [4,6], acting as a general developmental factor in the direction of

cell fate choices. The N gene was first described in Drosophila in 1919 by

Mohr [7]; its mutation produces females with notched wings. Notch signalling

has since been thoroughly studied in the development of the nervous system of

D. melanogaster embryos. During lateral inhibition, high levels of Dl provide a

neural precursor that sends a signal through the N receptor to neighbouring

cells, inducing them to follow an epidermal fate [8]. The absence of Dl or N
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leads to neuroblastic hyperplasia [9]. Dl/N signalling also

has an inductive role in eye and wing development [10],

and participates in the determination of cell fate during myo-

genesis [11]. Additionally, N signalling is involved in the

segmentation of the crustacean Daphnia magna [12].

The Notch pathway is also reported to be an important

regulator of insect oogenesis in three holometabolan species

with meroistic ovaries—D. melanogaster [13], Apis mellifera
[14] and Tribolium castaneum [15]—and in the development

of the panoistic ovary of the hemimetabolan insect Blattella
germanica [16]. In the germarium of D. melanogaster, N signal-

ling is associated with the establishment of the germ stem cell

niche that regulates the number of cap cells, the niche size

and the subsequent proliferation of the germ cells [17]. In

the egg chamber of D. melanogaster, Dl passes the signal

from the germline cyst to N, located in the somatic cells, for

the differentiation of cell populations that finally affect the

polarity of the oocyte [2,18,19]. Notch and Dl mutants

show an excess of posterior FCs owing to a change in cell

fate; this also affects the anterior–posterior polarity of the

oocyte [13]. The breakdown in the differentiation of the sub-

populations of FCs has a dramatic effect on the microtubule

cytoskeleton, impairing the formation of the anterior–

posterior axis [20]. Notch mutations also cause hyperplasia in

the polar cell precursor at the expense of stalk cells during

early oogenesis, leading to the fusion of the egg chambers

[13]. Finally, the expression of a constitutively active N or Dl

ligand in the D. melanogaster egg chamber, or overexpression

of Dl in the germline, gives rise to long stalk-like structures

that include the stalk itself as well as polar and undifferentiated

FCs [2]. A similar interaction between Dl and N may occur in

A. mellifera oogenesis, in which both ligand and receptor are

localized to the oocytes and FCs [14].

The FCs must enter, and later exit, the proliferative stage

in a very precise manner, steps in which N signalling actively

participates. The absence of N activity in D. melanogaster FCs

leads to prolonged mitosis at the expense of the endocycle

[19,21,22], whereas in T. castaneum the absence of N activity

triggers premature entrance into the endocycle [15]. The

interplay between the Notch and Hippo pathways during

the oogenesis of D. melanogaster and B. germanica [16,23–25]

has also been studied. Unlike in D. melanogaster, in which

the Hippo pathway promotes N signalling in the FCs [23],

N expression is repressed by Hpo in B. germanica, triggering

the mitosis-to-endocycle switch [16].

Information is still lacking, however, on the molecular

mechanisms underlying the N signalling pathway, and how

ligands and receptors interact during oogenesis in the ances-

tral panoistic ovary. Using the cockroach species B. germanica
as a model, this work examines the role of N (BgN in this con-

text) in the elongation of the ovarian follicle, and the part it

plays in FC cycle status. Insights gained via RNAi-based ana-

lyses into the role of the canonical ligands Dl (BgDl) and Ser

(BgSer) in the panoistic ovary of this cockroach are discussed.
2. Results
2.1. BgN regulates ovarian follicle elongation
BgN mRNA was strongly expressed in the ovaries during the

pre-vitellogenic stage, from when the insects began the sixth

(last) nymphal instar until becoming 3-day-old adults. At this
latter time, which coincides with the beginning of vitellogen-

esis, BgN expression halved and remained close to this

level until oviposition (figure 1a). Via the detection of the

NICD, it has previously been shown that N is present at vary-

ing levels in the different ovarian follicles of B. germanica
ovarioles [16]. In this work, BgN labelling appeared in the

cells located in the germarium, in the stalk cells between

the basal and sub-basal ovarian follicles, and in the FCs of

the basal ovarian follicle (figure 1b). BgN expression was

increased in mitotically active cells.

Because dsBgN treatment of newly emerged sixth-instar

individuals of B. germanica causes high mortality during the

imaginal moult [16], dsBgN was injected into 6-day-old

nymphs just before the beginning of apolysis. The nymphs

moulted correctly through to the adult stage, and the ovary

was analysed in 0-day-old (freshly ecdysed) adults. The ovar-

ies of these new adult females were affected to different

degrees, and were classified as either having a strong, i.e.

dsBgN-S (58%; figure 1d ) or mild, i.e. dsBgN-M (42%; elec-

tronic supplementary material, figure S1) phenotype.

dsBgN-S basal ovarian follicles were spherical in shape

(figure 1c,d ) rather than the ovoid forms usually observed

in dsMock-treated females (figure 1b). The dsBgN-S basal

ovarian follicles (0.30+0.02 mm; n ¼ 13) were significantly

shorter (around 36%) than those of dsMock-treated ovarian

follicles (0.47+0.02 mm (n ¼ 16); p , 0.0001; Mann–Whitney

test), although their width was similar (0.23+0.01 mm com-

pared with 0.24+0.02 mm; p ¼ 0.06; Mann–Whitney test).

The dsBgN-M basal ovarian follicles were slightly but signifi-

cantly shorter than those of the dsMock-treated females

(0.43+0.04 mm (n ¼ 15) compared with 0.47+0.02 mm

(n ¼ 16); p ¼ 0.0011; Mann–Whitney test), but again the

width was similar (0.26+0.02 mm compared with 0.24+
0.02 mm; p ¼ 0.06; Mann–Whitney test; electronic supplemen-

tary material, figure S1). While the ovarian follicles of 0-day-

old dsBgN-treated adult females showed a mixture of mild

and strong phenotypes, 5 days later (i.e. as 5-day-old adults),

all showed the strong phenotype. Hereafter, we refer only to

these latter, strong phenotype ovarian follicles.

The architecture of the F-actin microfilaments in the

ovarian follicles of 0-day-old dsBgN-treated adult females

appeared disorganized, and they stained poorly with

phalloidin-TRITC (figure 1d,d00). Alterations in the planar

polarity of the FCs were apparent; most of the FCs grouped

at the poles and were elongated with an anterior–posterior

orientation, as revealed by their nuclear morphology

(figure 1d0). No BgN labelling was detected in the ovarian fol-

licles (figure 1d,d000). At higher magnification, the changes in

the FCs were more evident. The FCs in the basal ovarian fol-

licles of dsMock-treated females were small, mitotically

active (figure 1e,e0) and had no spaces between them, and

the F-actin microfilaments were well distributed around the

cell membranes (figure 1e00). However, in the dsBgN-treated

females, FCs were scarce, their nuclei showed different sizes

and morphologies compared with the controls, and some

had a picnotic appearance (figure 1f–f00 ).
In 5-day-old dsBgN-treated adult females, the ovarian phe-

notype was more obviously affected (figure 2a). mRNA levels

of BgN were depleted by some 98% (41.6-fold; P(H1) ¼ 0.0001;

REST analysis; figure 2b). Those of the N ligands were affected

too: BgSer was downregulated by 11.6-fold (P(H1) ¼ 0.0001;

REST analysis), whereas BgDl was upregulated by 1.49-fold

(P(H1) ¼ 0.334) (figure 2b). BgSu-H, which is part of the
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Figure 1. Expression pattern of BgN and cytoskeleton impairments in the ovaries of 0-day-old dsBgN-treated adult females. (a) BgN mRNA expression in ovaries of
sixth-instar nymphs and adult females during the first gonadotrophic cycle, shows higher expression during the pre-vitellogenic period. The dashed line indicates the
moult to adult, the arrow the oviposition time, and 7c the time of choriogenesis. The pre-vitellogenesis (Pre-Vg), vitellogenesis (Vg) and post-vitellogenesis (Post-Vg)
stages are also indicated. Data represent copies of mRNA per 1000 copies of BgActin-5c (relative expression) and are expressed as means+ s.e.m. (n ¼ 3).
(b) Localization of BgN (NICD, magenta) in the cells placed in the germarium, in the stalk cells between the basal and sub-basal ovarian follicles, and in the FCs
of the basal ovarian follicle of 0-day-old dsMock-treated adult females. (c) Ovariole from 0-day-old dsBgN-treated adult female shows the basal ovarian follicle
with a spherical shape (the oocyte nucleus was labelled with the anti-Eya antibody). (d ) Changes in FC planar polarity in basal ovarian follicles from 0-day-old
dsBgN-treated adult females show (d0) nuclei, (d00) F-actin microfilaments and (d000) NICD labelling (with no labelling). (e) Follicular epithelium in basal ovarian follicles
from 0-day-old dsMock-treated females shows the FCs were mitotically active and the F-actin microfilaments were well distributed around the cell membranes: merged
image of (e0) nuclei and (e00) F-actin microfilaments. ( f ) Follicular epithelium in basal ovarian follicles from 0-day-old dsBgN-treated females: merged image of ( f0)
nuclei and (f00) F-actin microfilaments. DAPI was used in DNA staining, and phalloidin-TRITC to stain the F-actin microfilaments. In all images, the posterior pole of the
basal follicle is towards the bottom, except in (c) in which it is towards the left. Scale bars in (e,f ): 20 mm; in (b,d ): 50 mm and in (c): 100 mm.
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Figure 2. Depletion of BgN affects stalk formation in 5-day-old adult females. (a) Ovariole shows small ovarian follicles and a sub-basal oocyte that has broken the follicular
epithelium, bulging out of the ovarian follicle. (b) Relative expression of BgN, BgSu-H, BgDl and BgSer mRNAs in ovaries from dsMock- and dsBgN-treated females, where the
expression of BgN, BgSu-H and BgSer were significantly affected (asterisks). Data represent values normalized against the control (reference value¼ 1) (n ¼ 3). (c) Ovariole
from a dsBgN-treated adult shows the absence of the stalk. Labelling for BgDl (magenta) was localized to the cytoplasm of young oocytes; it was not detected in the basal
ovarian follicle. (d ) No labelling for BgDl was visible in the FCs of the basal ovarian follicle. Note that the cells in the oviduct are strongly labelled. (e) FC distribution in a basal
ovarian follicle from a dsBgN-treated female. (f ) Follicular epithelium from a basal ovarian follicle of a dsMock-treated female: merged image of ( f0) shows the nuclei,
and (f00) shows the F-actin microfilaments in the FCs. (g) Sub-basal ovarian follicle in a dsBgN-treated female shows the region of contact between adjacent follicles without
the stalk. (h) Ovarian follicle from a dsBgN-treated female shows the extruded oocyte bulging into the region between two ovarian follicles. (i) Network of F-actin micro-
filaments in the membrane of the bulging oocyte. ( j) The oocyte nucleus (labelled with anti-Eya antibodies, magenta) appeared in the bulge. (k) Sub-basal ovarian follicle
from a dsBgN-treated female with a constriction in the central zone owing to F-actin concentration. The oocyte nucleus is strongly labelled for Eya (red). (l,l0 ) Region
between the basal and sub-basal ovarian follicles without the stalk. (l ) Oocyte membranes form multiple expansions in this area. (l0 ) Surface of (l ) with the anomalous
distribution of FCs. The oocyte nucleus (n) is labelled with anti-Eya ( pink). sBOF, sub-basal ovarian follicle; BOF, basal ovarian follicle. In all images, the posterior pole of the
basal follicle is towards the bottom left. Scale bars, 50 mm; except in a,c and g: 100 mm.
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sending signal complex that helps N reach the nucleus, was

also upregulated 2.5-fold (P(H1) ¼ 0.0001; REST analysis;

figure 2b). The depletion of BgN resulted in basal ovarian fol-

licles 82% shorter than those of the controls ( p , 0.0001;

figure 2a,c; see also [16]), and which maintained the spheri-

cal shape observed in 0-day-old dsBgN-treated females

(figure 1f ). A typical feature seen in the insects of this age

was the reduction (even the absence) of the stalk between

the ovarian follicles (figure 2a,c,d), a consequence of the

absence of differentiated stalk cells in both the anterior

region of the basal ovarian follicle and the posterior region of

the sub-basal ovarian follicles (figure 2c,g).

The depletion of BgN mRNA in 5-day-old dsBgN-treated

adult females resulted in the absence of BgN protein labelling

in all ovarian follicles (figure 2a). BgDl was present in the

younger oocytes (from the sub-basal follicles to the germar-

ium), and extended throughout the cytoplasm (figure 2c),

but no labelling for BgDl was seen in the basal ovarian

follicles (figure 2c,d ). The FCs at the poles were still mononu-

cleated, and most of the nuclei maintained an elongated

shape giving the cells an anterior–posterior orientation

(figure 2d,e). The FCs located in the central region of the ovar-

ian follicle, however, showed nuclei more rounded in shape.

Finally, the majority of FCs in all locations showed a nucleus

with a picnotic appearance (figure 2d ). Conversely, in 5-day-

old dsMock-treated adult females, the FCs were binucleated

and had entered the endocycle (figure 2f,f0 ), and the F-actin

microfilaments associated with the cell membranes had lat-

eral extensions connecting the cells (figure 2f00 ), which

showed patency. In dsBgN-treated adult females, the

F-actin microfilaments (figure 2c–e) were not associated

with FC membranes, and were distributed like a thin mesh

covering the oocyte surface. They appeared more concen-

trated, however, in certain areas of the follicular epithelium.

The absence of stalk cells, the changes in FC morphology

observed and the modifications of F-actin distribution

precluded the normal growth of ovarian follicles. The sub-

basal ovarian follicles of the 5-day-old dsBgN-treated adult

females commonly showed overgrowth that broke the follicu-

lar epithelium to produce an external bulge hanging from the

ovariole (figure 2a,h–j). In some cases, this bulge contained

the oocyte nucleus (figure 2j ). No FCs were seen covering

these structures, and F-actin microfilaments associated with

the oocyte membrane were detected as spots spreading

over its surface (figure 2i). Occasionally, the anomalous dis-

tribution of the F-actin microfilaments constrained the

elongation of the sub-basal ovarian follicles (figure 2k). In

the regions connecting two ovarian follicles, cell membranes

emerging from the basal follicle appeared, extending and

invading the sub-basal follicles (figure 2l ).

These results show that BgN is important for oocyte

growth and maturation. BgN participates in ovarian follicle

elongation, acting on the cytoskeleton network and regulating

the anterior–posterior axis.
2.2. BgN maintains the follicular cells in a non-
apoptotic stage

In the basal ovarian follicles of the dsMock-treated adult females,

the FCs were mitotically active during pre-vitellogenesis

(figure 3a,a0). Cytokinesis was halted, and the endocycle

begun when vitellogenesis started (occurring in 3-day-old
adult females). From this moment, the FCs then became

binucleated and polyploid (figures 2f and 3d). As seen in the

0-day-old dsBgN-treated adult females, the depletion of BgN

resulted in the absence of mitosis in the FCs, as revealed by

PH3 labelling (figure 3b,b0). Cyclin-E (BgCyc-E) levels were

therefore checked by PCR to determine whether the FCs were

entering the endocycle. mRNA levels of BgCyc-E were

measured in 0-day-old (mitosis stage) and 5-day-old (endocycle

stage) dsMock-treated and dsBgN-treated adult females,

and 2.4-fold (P(H1)¼ 0.0001; REST analysis) and 2.6-fold

(P(H1) ¼ 0.036; REST analysis) upregulations recorded for

these different dsBgN-treated females, respectively (figure 3e).
Moreover, the morphology of the ovarian follicles in both the

0- and 5-day-old dsBgN-treated adult females suggested that

they had become prematurely apoptotic. The expression of

the effector caspase-1 (BgCasp-1) was therefore measured

(figure 3e). In the ovaries of 0-day-old dsBgN-treated adult

females it was found not to be affected, but in those of 5-day-

old females its expression increased 3.2-fold (P(H1) ¼ 0.013;

REST analysis). Caspase activity in the ovaries was localized

using an anti-cleavage caspase-3 antibody. No labelling was

detected in the ovarian follicles of dsMock-treated females

(figure 3c,d). However, in 5-day-old dsBgN-treated females,

half of the ovarioles (54.5%; n ¼ 22) showed extremely strong

caspase-3 labelling in the basal ovarian follicles, the FCs and

the ooplasm (figure 3f,g). It is worth noting that, among the ovar-

ian follicles, only the basal type were labelled (figure 3h); no

labelling of any younger follicles was seen. In the remaining

dsBgN-treated ovarian follicles (45.5%; n ¼ 22), very faint cas-

pase-3 staining (figure 3i,j) was detected in groups of FCs

mainly in the anterior region of the follicle and the transition

zone between the basal and sub-basal follicles. Moreover, in

agreement with the negative results for BgCasp-1 expression in

0-day-old dsBgN-treated females, no caspase-3 labelling was

detected at this age (not shown).

Taken together, these results show that BgN regulates the

cell cycle, maintaining, in the basal ovarian follicle, the FCs in

a proliferative and non-apoptotic stage.
2.3. Expression of Notch ligands in the ovary of
Blattella germanica

BgDl and BgSer, the canonical ligands of N, showed

expression patterns with complementary profiles during the

sixth nymphal instar, suggesting changing ligand availability

for the BgN receptor. The expression of BgDl in the ovaries

of sixth-instar nymphs showed slight variations over this

developmental stage (figure 4a). However, the expression of

BgDl during the adult stage fell continuously until the time

of oviposition.

BgSer was expressed in the ovary at lower levels than

BgDl, in both the sixth nymphal instar and in the adult stage.

However, expression increased after the imaginal moult,

coinciding with the mitotic programme in the FCs. After this

moment, and matching with the switch of the FCs to the endo-

cycle, the expression of BgSer declined gradually until the time

of oviposition (figure 4b).

BgDl was immunolocalized in the ovaries using an anti-

body against the Dl extracellular domain of D. melanogaster.

In the ovarioles of 0-day-old sixth-instar nymphs, BgDl

appeared in the FCs of all the ovarian follicles (figure 4c),

in general occupying a basolateral position. In the oocyte,
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however, it was detected close to the membrane. Later, in 5-

day-old sixth-instar nymphs (figure 4d,e), it was observed in

a more basal location in the FCs of all the ovarian follicles. A

patchy distribution was seen for the entire follicular epi-

thelium, with many cells showing no BgDl labelling at all

(figure 4e). Remarkably, in both 0- and 5-day-old sixth-
instar nymphs, no BgDl labelling was seen in the FCs at

either the posterior or anterior pole in any developing ovar-

ian follicle throughout the vitellarium (figure 4c,d).

In 0-day-old dsMock-treated adult females, the absence of

BgDl labelling at the poles of the basal ovarian follicles was

apparent (figure 4f, arrows). At the anterior pole (figure 4g),
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no BgDl was detected in the most anterior FCs, or in the stalk

cells in contact with them. Similar observations were made at

the posterior pole in those cells close to the pedicel

(figure 4h). However, in the younger oocytes in the vitellarium

and germarium, and indeed in some germ stem cells, BgDl

appeared to be distributed throughout the cytoplasm

(figure 4i). In 5-day-old dsMock-treated adult females, label-

ling in the FCs of the basal ovarian follicle was weak, but

spread over the cytoplasm and nuclear membrane (figure 4j ).
During post-vitellogenesis, in 7-day-old dsMock-treated

adult females, the decline in BgDl was more obvious, until

becoming practically undetectable just before oviposition

(figure 4k).
Biol.6:150197
2.4. Depletion of BgDl and BgSer prevents the proper
maturation of the ovarian follicle

To determine whether the relationship between the receptor

(BgN) and their canonical ligands (BgDl and BgSer) is

conserved in the panoistic ovaries of B. germanica, BgDl

and BgSer were depleted by injecting the corresponding

dsRNAs into 6-day-old sixth-instar nymphs and observing

the phenotype in the adult stage.

In the ovaries of 5-day-old dsBgDl-treated adult females,

BgDl mRNA levels were significantly reduced (1.5-fold;

P(H1) ¼ 0.0001; REST analysis), whereas the expression of

BgN and BgSer showed a trend towards decreasing (figure 5a).

Conversely, in dsBgSer-treated adult females of the same age,

the levels of BgSer mRNA in the ovaries were strongly reduced

(4.5-fold; P(H1)¼ 0.0001; REST analysis; figure 5a) but the

expressions of BgDl and BgN were unaffected. Further, all other

target genes of the Notch pathway were affected by the depletion

of the ligands (electronic supplementary material, figure S2).

In dsBgDl-treated females, again 5-day-old, the size of the

basal ovarian follicles showed notable intra-individual varia-

tion. Compared with dsMock-treated females (1.55+0.08 mm;

n ¼ 12), some ovarian follicles partially grew (1.14+0.19 mm

(n ¼ 7); p ¼ 0.0006; Mann–Whitney test; figure 5b), and some

were smaller (0.45+0.06 mm (n ¼ 14); p , 0.0001, Mann–

Whitney test; figure 5c). These smaller ovarian follicles showed

a fragile appearance, were closely connected and appeared

tangled with the tunica propria.

In the basal ovarian follicles that grew partially, BgDl was

detected in some FCs (figure 5d ). In those FCs lacking BgDl

labelling, the distribution of F-actin microfilaments appeared

modified; they accumulated in the cytoplasm (figure 5e0,i00).
In general, these basal ovarian follicles did not show patency

(figure 5e,e0) and not all the FCs were binucleated (figure 5e);

this contrasts with that seen in dsMock-treated females, in

which all the FCs were binucleated (figure 4j ). Moreover,

the nuclei showed condensed chromatin, suggesting that

these cells might be dying prematurely, as also indicated by

caspase-3 labelling (figure 5i). Further, in the smaller basal

ovarian follicles of 5-day-old dsBgDl-treated females, the

FCs were smaller, had an irregular shape, and were mononu-

cleated (figure 5f ). The F-actin microfilaments appeared

randomly distributed (figure 5f0 ), affecting the planar

polarity of the epithelium and leaving large spaces between

the cells. In addition, the oocyte membrane was generally

detached from the FCs (figure 5g). Despite the severe defects

of this phenotype, low levels of BgDl were detectable in some

FCs (figure 5g). Although the morphology of these ovarian
follicles suggests they were dying (figure 5g), the number of

caspase-3 labelled FCs was more or less the same as that

seen in the oocytes that partially grew (figure 5i,j).
In 5-day-old dsBgSer-treated adult females, the mRNA

levels of BgSer were dramatically depleted. However,

the basal follicles reached a similar length (1.6+0.15 mm

(n ¼ 13); p ¼ 0.42; Mann–Whitney test) to those of dsMock-

treated females, and the morphological phenotype was the

same as that of these controls. However, the FCs were

significantly shorter (20.8+0.37 mm (n ¼ 27); p , 0.001;

Mann–Whitney test) than in the dsMock-treated females

(25.4+0.6 mm (n ¼ 37); electronic supplementary material,

figure S3), and some FCs in the basal ovarian follicles of

the dsBgSer-treated females showed clear caspase-3 labelling,

indicating them to be apoptotic (electronic supplementary

material, figure S4).

2.5. Unlike that seen with BgN depletion, RNAi of BgDl
and BgSer revealed the stalk structure in the basal
ovarian follicles

It was expected that depleting the ligands of BgN would also

lead to the absence of the stalk that resulted from BgN

depletion (figures 1 and 2). However, and although the

mRNA expression of BgDl and BgSer was depleted, the stalk

formed in a manner similar to that seen for the dsMock-treated

females; indeed, sometimes it was even longer (figure 6b–d).

With the aim of enhancing the expected interference, both

dsBgDl and dsBgSer were injected at the same time in 0-day-

old adult females, and follicle development observed 5 days

later. In the ovaries of these double-treated females, the

expression of BgN showed a trend to reduce by about half,

BgDl levels were not affected and BgSer levels showed notable

variation (figure 6a and electronic supplementary material,

figure S4). In half of the treated specimens BgSer expression

was significantly downregulated (P(H1) ¼ 0.0001; REST analy-

sis), whereas in the other half it was increased (P(H1) ¼ 0.0001;

REST analysis, electronic supplementary material, figure S5).

However, the same ratio of strong-to-mild phenotypes was

observed as for dsBgDl treatment alone (not shown), and the

stalk was similar—indeed, it was sometimes even longer

than those seen in controls (figure 6e).

These results show that reducing BgDl mRNA levels by

half is not enough to endanger the formation of the stalk

structure, and that the BgSer ligand is not necessary for its

production.

2.6. The Notch pathway is involved in the
differentiation of follicular cell populations
at the poles

The absence of BgDl protein in the FCs at the basal ovarian

follicle poles (figure 4), together with the changes in the dis-

tribution of these FCs observed after BgN depletion

(figure 1), suggests that the Notch pathway is involved in

the differentiation of specific FC populations. Moreover,

BgN appears to be still active in FCs after BgHpo depletion,

as was assessed by the strong NICD labelling in the posterior

FCs (figure 7a; see also [16]). Further, these FCs showed

differences in shape and pattern of distribution compared

with dsMock-treated controls (figure 7b,c, dashed area). In
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some groups of FCs, the cytoskeletal proteins b-tubulin

(figure 7b) and F-actin (figure 7c00) were almost absent. The

nuclei of these cells were also larger and they showed differ-

ent DNA staining compared with controls (figure 7b0,c000). In

the band of cells surrounding the posterior FCs, BgDl protein

was highly overexpressed (figure 7c,c0). Remarkably, BgDl

was detected in the posterior FCs; this ligand was not usually

detected in these cells.
These results show that BgDl interacts with BgN in the

differentiation of a specific type of posterior FCs.
3. Discussion
In the meroistic polytrophic ovary of D. melanogaster, the acti-

vation of N via Dl signalling triggers the switch from mitosis
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to the endocycle [19,21]. However, an ancestral role for the Notch

pathway has recently been revealed in the meroistic telotro-

phic ovary of T. castaneum [15] and in the panoistic ovary of
B. germanica [16]. In these less modified ovarian models, low

level N signalling in the FCs is crucial in triggering the transition

from mitosis to endocycle. In B. germanica, N activity is under the

control of Hpo [16], as the depletion of BgHpo results in the

maintenance of N activity, which keeps the mitotic programme

of FCs along the first gonadotrophic cycle. This prolonged mito-

tic state was counteracted when N was depleted in these females

with low levels of BgHpo, thus confirming the ancestral role of N

in FC mitotic–endocycle switch [16].

The expression of N during oogenesis in B. germanica [16] is

similar to that seen in A. mellifera [14] and T. castaneum [15],

occurring both in germ and in somatic cells. BgN labelling dis-

appears when the follicles have left the germarium, only to

appear once more in oocytes that are ready to mature [16].

This is similar to that described for the A. mellifera ovary [14],

but different to that seen in D. melanogaster, in which FC

expression of N is maintained until oogenesis is complete [26].

As in the meroistic telotrophic ovary of T. castaneum [15],

the present results show N signalling to be needed in the

panoistic ovary of B. germanica in order to maintain FCs mito-

tically active, and to keep them in an immature-like state. The

entrance of the FCs into the endocycle usually requires the

arrest of factors promoting mitosis, such as Cyclin-B, plus

the phosphorylation of histone-3 and the upregulation of

endocycling components such as Cyclin-E and/or Cyclin-D

[27]. However, the depletion of BgN causes mitosis in the

FCs to cease, preventing entry into the endocycle, as seen

by the small size of the cells and their very small nuclei.

Further, although Cyclin-E is overexpressed, strong caspase-

1 expression suggests that these cells prematurely began pro-

grammed cell death; this was further confirmed by the

presence of caspase-3 in the basal ovarian follicles of 5-day-

old dsBgN-treated adult females. Remarkably, the apoptotic

marker is only detected in the basal follicle and in stalk

cells, where BgN is usually expressed. Whether this occurs

because they fail to enter the endocycle, or because the FCs

remain sensitive to other developmental signals when BgN

is depleted, remains to be clarified. However, it has been

described that the Notch pathway modulates the response

to apoptosis in many developing organisms, connecting

through crosstalk with other signalling pathways [28]. More-

over, in D. melanogaster oogenesis, N has an indirect role

repressing apoptosis in the FCs after stage 6 [29]. Thus,

decreasing BgN levels are required for FCs to transition to

the endocycle, whereas N signalling is necessary for the

survival of the maturing ovarian follicle.

The disorganization of the F-actin microfilaments after

almost complete BgN depletion hinders the proper elongation

of the follicle, resulting in the formation of spherical ovarian fol-

licles. A similar phenotype has been observed in the egg

chambers of D. melanogaster mutants for Fat2 cadherin; these

mutants produce eggs spherical in shape and which have

defects in the planar polar organization of the F-actin microfila-

ments, preventing egg elongation [30]. In addition, the interplay

between the Notch and EGFR pathways maintains the anterior–

posterior axis of D. melanogaster egg chambers; N is required

at both poles for the correct expression of anterior–posterior

markers [2,5,31]. The same has recently been described in

B. germanica [32], suggesting the involvement of BgEGFR in

the planar polarity deficiencies of FCs seen after BgN depletion.

Although BgDl and BgSer are the canonical ligands

involved in the activation of the Notch pathway, other non-

canonical ligands might participate in signalling [5,33]. In the
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ovary of B. germanica, the above canonical ligands showed

complementary mRNA expression patterns, suggesting differ-

ent ligand activity occurs at different times. In D. melanogaster
oogenesis, Ser plays no role in the induction of N activity

[10], the opposite to that seen in spermatogenesis, in which

N is activated by Ser in the embryonic gonad [34]. In this

work, the modulation of this ligand could not be confirmed,

because no dramatic phenotypes were obtained after BgSer

depletion, despite the drastic fall in the transcription of BgSer

mRNA. However, BgSer is expressed in the ovary, and this

expression is significantly altered when BgN levels are modi-

fied by dsBgN, dsBgHpo or dsBgEGFR treatment [16,32].

After dsBgSer treatment, the FCs were shorter, suggesting a

functional action in the follicular epithelium of panoistic

ovary. Thus, in the ovary of B. germanica, BgN appears to regu-

late the expression of BgSer, but the ligand does not affect the

expression of the receptor.

The expression of Dl protein has been noted restricted to

the germline cells in those insect species in which the Notch

pathway has been studied [13–15,26]. In these species, Dl

sends a signal from the oocyte which activates N in the FCs,

thus controlling both the cell cycle and cell differentiation

[19]. In this work, however, BgDl was detected in both germ

and somatic cell lines, and was clearly absent in the posterior

FCs. Further, after the activation of the Notch pathway result-

ing from BgHpo silencing, BgDl was overexpressed even in

the posterior FCs, suggesting that somatic N–DI signalling
determines the phenotype of the posterior FC population. It

is known that N signalling induced by the ligands can be

achieved by activating or inhibiting the receptor, depending

on the developmental context [3,6].

The role of the Notch pathway in stalk formation is conser-

ved from panoistic to telotrophic and through to polytrophic

meroistic ovary types [15,16,19,21]. In the case of D. melanogaster
and T. castaneum, the phenotypes resulting from N and Dl

depletion are similar [2,13], though they are more severe for

Dl depletion in T. castaneum [15]. However, neither the depletion

of BgDl, nor of BgSer, nor even the simultaneous depletion of

both, led to the absence of the stalk seen with BgN depletion.

It is possible that small amounts of BgDl are enough to trigger

a positive response of the pathway, as suggested by the different

degrees to which the ovarioles are affected in dsBgDl-treated

adult females. Thus, subtle changes in Dl levels may lead to

differential responses in the follicles. This in turn suggests that

non-canonical proteins are involved in the transmission of the

signal, or that N acts independently of the ligand signal, as

occurs in the D. melanogaster ovary when the Dl and Ser ligands

are removed [35].

Notch signalling in the panoistic ovary of B. germanica
allows for the proper development of the ovarian follicle by

regulating both the proliferation and differentiation of

somatic cells. The present results reveal the role of the

Notch pathway in maintaining the proliferative and non-

apoptotic state of FCs, as well in the differentiation of the
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posterior FC population. The role of N signalling cannot be

fully understood’ however, unless the spatio-temporal inter-

play between the Notch and other signalling pathways is

taken into account, along with the dynamics of their canoni-

cal and non-canonical components. Work along these lines is

presently in progress at our laboratory.
ypublishing.org
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4. Material and methods
4.1. Cockroach colony and animal sampling
Freshly ecdysed sixth-instar nymphs and freshly ecdysed adult

females of the cockroach B. germanica (L.) were obtained from a

colony fed on Panlab dog chow and water ad libitum, kept in

the dark at 29+18C and 60–70% relative humidity. The new

adult females were maintained with males to ensure their

having mated before their use in all experiments (the presence

of spermatozoa in the spermathecae was assessed at the end

of all experiments to confirm mating had occurred). Dissections

and tissue sampling were performed on carbon dioxide-

anaesthetized specimens, held under Ringer’s saline. Nymphs

and adults were examined at different ages (as shown in Results).

4.2. RNA extraction and expression studies
Total RNA was isolated using the GenElute mammalian total

RNA kit (Sigma, Madrid, Spain). About 400 ng from each

RNA extraction was DNAse treated (Promega, Madison,

WI) and reverse transcribed with superscript II reverse tran-

scriptase (Invitrogen, Carlsbad, CA) and random hexamers

(Promega). RNA quantity and quality was estimated by spec-

trophotometric absorption at 260/280 nm in a NanoDrop

ND-1000w spectrophotometer (NanoDrop Technologies,

Wilmington, DE).

Expression patterns for B. germanica BgN, BgDl and BgSer

were determined by quantitative real-time PCR (qRT-PCR) in

sixth-instar nymphs and adults in the first gonadotrophic

cycle. Pools of two to six ovary pairs were used in each exper-

iment. PCR primers for use in qRT-PCR expression studies

were designed using PRIMER 3 v. 0.4.0 software [36]. The

actin-5c gene of B. germanica was used as a reference for

expression studies, and that of the eukaryotic initiation factor

4A (BgEIF4a) for functional studies. PCRs were performed as

previously described [37]. Primer sequences and the accession

numbers the sequences used are shown in the electronic

supplementary material, table S1.

4.3. RNAi experiments
dsRNAs were synthesized as previously described [38].

dsBgN (363 bp) was designed to lie in a region that encom-

passed a fragment of the BgN Ankyrin domain [16].

dsBgDl (339 bp) was designed to lie in the N terminus of

the N ligand, and dsBgSer (260 bp) was designed to lie in a

region with no conserved domain. These dsRNAs were

injected at a dose of 1 mg ml21 into 6-day-old last (sixth)

instar nymphs. To deplete both N ligands, a double injection

of dsBgDl and dsBgSer was performed—dsBgDl first and

dsBgSer 4 h later—on the opposite side of the abdomen.

dsBgHpo, designed following a previous protocol [16], was

injected (also into the side of the abdomen) into freshly
ecdysed nymphs (day 0 of the sixth-instar). The electronic

supplementary material, table S1 shows the primer sequences

used to synthesize the dsRNAs.

4.4. Whole-mount immunolocalization
Ovaries were dissected from the last-instar nymphs and

adults of different ages. Fixing and staining were performed

as previously described [16,39]. The primary rabbit antibodies

employed were anti-PH3 and anti-cleaved caspase-3 (Asp175)

(Cell Signaling Technology, Denver, MA; dilution 1 : 250). The

primary mouse antibodies used were anti-NICD (C17.9C6,

Notch intracellular domain), anti-Delta (C594.9B, Delta

extracellular domain) anti-Eya (eye absent; eya10H6, which

appeared as good marker of the oocyte nucleus) and anti-b-

tubulin (E7 tubulin beta), all obtained from the Developmental

Studies Hybridoma Bank (Department of Biology, University

of Iowa, Iowa City, IA; dilutions 1 : 100 for anti-NICD and

anti-Delta, and 1 : 50 for anti-Eya and anti-b-tubulin, made

from concentrated stocks). Tissues were washed with PBTBN

three times and incubated for 2 h with either Alexa-Fluor 647

conjugated donkey anti-rabbit IgG or Alexa-Fluor 488 conju-

gated goat anti-mouse IgG secondary antibody (Molecular

Probes, Carlsbad, CA), both diluted at 1 : 400 in PBTBN.

These ovaries were then incubated for 20 min in 300 ng ml21

phalloidin-TRITC (Sigma), and then for a further 5 min in

1 mg ml21 DAPI (Sigma) in PBT. After three washes with

PBT, the tissues were mounted in Mowiol (Calbiochem,

Madison, WI), and observed using a Zeiss AxioImager.Z1

(Apotome) microscope (Carl Zeiss Microimaging).

4.5. Statistical analysis
Data are expressed as means+ s.e. Morphometric differences

in ovarian follicles and follicular cells between treated and con-

trol individuals were analysed by using the Mann–Whitney

test (performed using GRAPHPAD PRISM 6 Demo software, La

Jolla, CA). Differences between expression levels were exam-

ined using the pair-wise fixed reallocation randomization

test (performed using the Relative Expression Software Tool

(REST) v. 2.0.7; Corbett Research, Sydney, Australia). This

test makes no assumptions regarding data distribution [40].
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